

# **Material Data Sheet**

# AlSi10Mg

#### **Printer Process Specifications**

| Material                      | AISi10Mg (UNS A03590, 3.2381) |
|-------------------------------|-------------------------------|
| Layer Thickness (µm)          | 30                            |
| Laser Power (W)               | 154                           |
| Additive Manufacturing System | XM200C                        |
| Print Parameters              | AlSi10Mg-C-30-210615          |

#### **Material Description**

AlSi10Mg is an aluminum casting alloy with excellent castability. Its ease of casting makes it ideal for parts with thin walls or complex geometries. It has good mechanical properties, with good strength and hardness to hold up to high loads. AlSi10Mg also has a much lower weight than most ferrous, nickel, or even titanium alloys. These properties, along with its good thermal properties and flexible post-processing possibilities make it attractive for many industries.

#### **Material Properties**

- o High strength to weight ratio
- o Good thermal properties
- Flexible post-processing
- o Good harness

### Applications

- o Structural automotive components
- Aerospace applications
- Air ducting systems
- Engine components



# General Wrought Material Data (1)

| Density [g/cc]                                           | 2.67     |
|----------------------------------------------------------|----------|
| Thermal Conductivity [W/m*K]                             | 170      |
| Melting Range [°C]                                       | 570      |
| Coefficient of Thermal Expansion (0 to 100 °C)<br>[K^-1] | 2.0x10⁻⁵ |

<sup>(1)</sup> From Zare Materials

## Chemical Composition (2)

| Element | Mass %      |
|---------|-------------|
| AI      | Balance     |
| Si      | 9.0 - 11.0  |
| Mg      | 0.20 - 0.45 |
| Fe      | 0.55 Max    |
| Mn      | 0.1 Max     |
| Cu      | 0.1 Max     |
| Sn      | 0.1 Max     |
| Zn      | 0.1 Max     |
| Ni      | 0.1 Max     |
| Pb      | 0.1 Max     |
| Ti      | 0.15 Max    |

<sup>(2)</sup> From IMR Metal Powder Technologies



#### **Heat Treatment**

Testing samples were stress relieved at 200 °C for 2 hours and air cooled.

## **Mechanical Properties**

|                                              | Mean Value | Standard Deviation |  |
|----------------------------------------------|------------|--------------------|--|
| Component Density [g/cc]                     | 2.66       |                    |  |
| Percentage of Theoretical density            | 99.6%      |                    |  |
| Ultimate Tensile Strength<br>(UTS) - ASTM E8 |            |                    |  |
| Horizontal (XY) [ksi (MPa)]                  | 46.9 (323) | 0.440 (3.03)       |  |
| Vertical (Z) [ksi (MPa)]                     | 37.0 (255) | 0.793 (5.47)       |  |
| Yield Strength - ASTM E8                     |            |                    |  |
| Horizontal (XY) [ksi (MPa)]                  | 27.7 (191) | 0.173 (1.19)       |  |
| Vertical (Z) [ksi (MPa)]                     | 21.9 (151) | 0.670 (4.62)       |  |
| Elongation at Break - ASTM E8                |            |                    |  |
| Horizontal (XY)                              | 6.57       | 0.06               |  |
| Vertical (Z)                                 | 3.85       | 0.75               |  |
| Hardness (Rockwell) - ASTM<br>E18            | 51 HRB     | 1.0 HRB            |  |



#### **Powder Particle Size Distribution** <sup>(3)</sup>

| Per ASTM B822 (Using Microtrac) | Min  | Max  |
|---------------------------------|------|------|
| d10 (microns)                   | 31.6 | 32.1 |
| d50 (microns)                   | 44.4 | 45.4 |
| d90 (microns)                   | 62.4 | 63.9 |

<sup>(3)</sup> From <u>Reiner et. al., 2021</u>

Xact Metal has spent significant effort to ensure the content of this Material Data Sheet is correct at the date of publication but makes no warranties or representations regarding the content. Xact Metal excludes liability for any inaccuracies in this document.

Feb - 2021